feATURES

- Sample Rate: 250Msps
- 65.4dB SNR
- 78dB SFDR
- 1.2GHz Full Power Bandwidth S/H
- Single 2.5V Supply
- Low Power Dissipation: 740mW
- LVDS, CMOS, or Demultiplexed CMOS Outputs
- Selectable Input Ranges: $\pm 0.5 \mathrm{~V}$ or $\pm 1 \mathrm{~V}$
- No Missing Codes
- Optional Clock Duty Cycle Stabilizer
- Shutdown and Nap Modes
- Data Ready Output Clock
- Pin Compatible Family

250Msps: LTC2242-12 (12-Bit), LTC2242-10 (10-Bit) 210Msps: LTC2241-12 (12-Bit), LTC2241-10 (10-Bit) 170Msps: LTC2240-12 (12-Bit), LTC2240-10 (10-Bit) 185Msps: LTC2220-1 (12-Bit)* 170Msps: LTC2220 (12-Bit), LTC2230 (10-Bit)* 135Msps: LTC2221 (12-Bit), LTC2231 (10-Bit)*

- 64-Pin 9mm $\times 9 \mathrm{~mm}$ QFN Package

APPLICATIONS

- Wireless and Wired Broadband Communication
- Cable Head-End Systems
- Power Amplifier Linearization
- Communications Test Equipment

DESCRIPTIOn

The LTC ${ }^{\circledR} 2242-12$ is a 250 Msps , sampling 12 -bit A/D converter designed for digitizing high frequency, wide dynamic range signals. The LTC2242-12 is perfect for demanding communications applications with AC performance that includes 65.4 dB SNR and 78dB SFDR. Ultralow jitter of $95 f_{\text {RMS }}$ allows IF undersampling with excellent noise performance.

DC specs include $\pm 1.0 \mathrm{LSB}$ INL (typ), $\pm 0.4 \mathrm{LSB}$ DNL (typ) and no missing codes over temperature.

The digital outputs can be either differential LVDS, or single-ended CMOS. There are three format options for the CMOS outputs: a single bus running at the full data rate or two demultiplexed buses running at half data rate with either interleaved or simultaneous update. A separate output power supply allows the CMOS output swing to range from 0.5 V to 2.625 V .

The ENC ${ }^{+}$and ENC- inputs may be driven differentially or single ended with a sine wave, PECL, LVDS, TTL, or CMOS inputs. An optional clock duty cycle stabilizer allows high performance over a wide range of clock duty cycles.
$\boldsymbol{\Omega}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.
*LTC2220-1, LTC2220, LTC2221, LTC2230, LTC2231 are 3.3V parts.

TYPICAL APPLICATION

224212611

ABSOLUTE MAXIMUM RATINGS ovon $_{0}=V_{00}($ Noeses 1,2$)$

Supply Voltage (VD) \qquad 2.8V Power Dissipation

1500 mW
Digital Output Ground Voltage (OGND) -0.3V to 1 V Operating Temperature Range
Analog Input Voltage (Note 3) -0.3 V to (VDD +0.3 V)
LTC2242C-12 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Digital Input Voltage \qquad -0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$

LTC22421-12 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Digital Output Voltage -0.3 V to $(0 \mathrm{~V} D \mathrm{D}+0.3 \mathrm{~V})$

Storage Temperature Range

 $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
PACKAGE/ORDER INFORMATION

*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

CONVERTER CHARACTERISTICS
The © denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Resolution (No Missing Codes)		\bullet	12			Bits
Integral Linearity Error	Differential Analog Input (Note 5)	\bullet	-2.7	± 1	2.7	LSB
Differential Linearity Error	Differential Analog Input	\bullet	-1	± 0.4	1	LSB
Offset Error	(Note 6)	\bullet	-17	± 5	17	mV
Gain Error	External Reference	\bullet	-3.2	± 0.7	3.2	$\% \mathrm{FS}$
Offset Drift			± 10	μ / C		
Full-Scale Drift	Internal Reference		± 60	$\mathrm{ppm} / \mathrm{C}$		
	External Reference	± 45	ppm/C			
Transition Noise	SENSE $=1 V$		0.74	LSBRMS		

A \AA ALOG InPUT The • denotes the specifications which apply over the full operating temperature range, otherwise
specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Analog Input Range ($\mathrm{AlN}^{+}-\mathrm{A}_{\text {IN }}{ }^{-}$)	$2.375 \mathrm{~V}<\mathrm{V}_{\text {DD }}<2.625 \mathrm{~V}$ (Note 7)	\bullet	± 0.5 to ± 1			V
VIN, CM	Analog Input Common Mode ($\mathrm{AIN}^{+}+\mathrm{AIN}^{-}$)/2	Differential Input (Note 7)	\bullet	1.2	1.25	1.3	V
$\underline{1 N}$	Analog Input Leakage Current	$0<\mathrm{AIN}^{+}, \mathrm{AIN}^{-}<\mathrm{V}_{\text {DD }}$	\bullet	-1		1	$\mu \mathrm{A}$
ISENSE	SENSE Input Leakage	OV < SENSE < 1V	\bullet	-1		1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {MODE }}$	MODE Pin Pull-Down Current to GND				7		$\mu \mathrm{A}$
$\underline{\text { LVDS }}$	LVDS Pin Pull-Down Current to GND				7		$\mu \mathrm{A}$
$\mathrm{t}_{\text {AP }}$	Sample and Hold Acquisition Delay Time				0.4		ns
$\mathrm{t}_{\text {IITTER }}$	Sample and Hold Acquisition Delay Time Jitter				95		$\mathrm{fs}_{\text {RMS }}$
	Full Power Bandwidth	Figure 8 Test Circuit			1200		MHz

DYПAmIC ACCURACY The • denotes the specifications which apply over the full operating temperature range,

 otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{A}_{\text {IN }}=-$ ddBFS. (Note 4)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNR | Signal-to-Noise Ratio (Note 10) | 10MHz Input | | | 65.4 | | dB |
| | | 70MHz Input | - | 63.4 | 65.3 | | dB |
| | | 140MHz Input | | | 65.3 | | dB |
| | | 240MHz Input | | | 65.1 | | dB |
| SFDR | Spurious Free Dynamic Range 2nd or 3rd Harmonic (Note 11) | 10MHz Input | | | 78 | | dB |
| | | 70MHz Input | \bullet | 65 | 75 | | dB |
| | | 140MHz Input | | | 74 | | dB |
| | | 240MHz Input | | | 73 | | dB |
| | Spurious Free Dynamic Range 4th Harmonic or Higher (Note 11) | 10MHz Input | | | 87 | | dB |
| | | 70MHz Input | \bullet | 73 | 87 | | dB |
| | | 140MHz Input | | | 87 | | dB |
| | | 240MHz Input | | | 87 | | dB |
| S/(N+D) | Signal-to-Noise Plus Distortion Ratio (Note 12) | 10MHz Input | | | 65.3 | | dB |
| | | 70MHz Input | \bullet | 61.8 | 65.1 | | dB |
| | | 140MHz Input | | | 64.8 | | dB |
| | | 240MHz Input | | | 64.5 | | dB |
| IMD | Intermodulation Distortion | $\mathrm{f}_{\mathrm{IN} 1}=135 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=140 \mathrm{MHz}$ | | | 81 | | dBc |

InTERMAL REFERENCE CHARACTERISTICS (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX
UNITS				
$V_{\text {CM Output Voltage }}$	$I_{\text {OUT }}=0$	1.225	1.25	1.275
$V_{C M}$ Output Tempco		V		
$\mathrm{V}_{\text {CM }}$ Line Regulation	$2.375 \mathrm{~V}<\mathrm{V}_{\text {DD }}<2.625 \mathrm{~V}$	± 35	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {CM }}$ Output Resistance	$-1 \mathrm{~mA}<\mathrm{I}_{\text {OUT }}<1 \mathrm{~mA}$	3	mV / V	

DICITALIAPUTS AMD PICITALOUTPUTS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
ENCODE INPUTS (ENC+, ENC-)							
VID	Differential Input Voltage	(Note 7)	\bullet	0.2			V
VICM	Common Mode Input Voltage	Internally Set Externally Set (Note 7)	\bullet	1.2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	2.0	V
$\mathrm{R}_{\text {IN }}$	Input Resistance				4.8		k Ω
$\mathrm{C}_{\text {IN }}$	Input Capacitance	(Note 7)			2		pF

LOGIC INPUTS ($\overline{0 E}$, SHDN)

$V_{I H}$	High Level Input Voltage	$V_{D D}=2.5 \mathrm{~V}$	\bullet	1.7	V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	\bullet	0.7	V
$I_{\text {IN }}$	Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}	\bullet	-10	10
$\mathrm{C}_{\text {IN }}$	Input Capacitance	(Note 7$)$		$\mu \mathrm{A}$	

LOGIC OUTPUTS (CMOS MODE)
$0 \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}$

$C_{0 Z}$	Hi-Z Output Capacitance	$\overline{\text { OE }}=$ High (Note 7)	3	pF
$I_{\text {SOURCE }}$	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	37	mA
$I_{\text {SINK }}$	Output Sink Current	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	23	mA
$\mathrm{~V}_{\text {OH }}$	High Level Output Voltage	$\mathrm{I}_{0}=-10 \mu \mathrm{~A}$	2.495	V
		$\mathrm{I}_{0}=-500 \mu \mathrm{~A}$	2.45	V
$\mathrm{~V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{I}_{0}=10 \mu \mathrm{~A}$	0.005	V
		$\mathrm{I}_{0}=500 \mu \mathrm{~A}$	0.07	V

$\mathrm{OV}_{\mathrm{DD}}=1.8 \mathrm{~V}$

$\mathrm{V}_{\text {OH }}$	High Level Output Voltage	$\mathrm{I}_{0}=-500 \mu \mathrm{~A}$		1.75			V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\mathrm{I}_{0}=500 \mu \mathrm{~A}$			0.07		
LOGIC OUTPUTS (LVDS MODE)							
$\mathrm{V}_{\text {OD }}$	Differential Output Voltage	100Ω Differential Load	\bullet	247	350	454	mV
$\mathrm{V}_{\text {OS }}$	Output Common Mode Voltage	100Ω Differential Load	\bullet	1.125	1.250	1.375	V

POWER $\boldsymbol{R} \in$ QUIREME
The denotes the specifications which apply over the full operating temperature
range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 9)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {DD }}$	Analog Supply Voltage	(Note 8)	\bullet	2.375	2.5	2.625
$P_{\text {SLEEP }}$	Sleep Mode Power	SHDN = High, $\overline{\text { OE }}=$ High, No CLK		1	V	
$P_{\text {NAP }}$	Nap Mode Power	SHDN = High, $\overline{\text { OE }=\text { Low, No CLK }}$		28	mW	

LVDS OUTPUT MODE

OV	Output Supply Voltage	(Note 8)	\bullet	2.375	2.5	2.625
$I_{\text {VDD }}$	Analog Supply Current		\bullet	V		
$I_{\text {OVDD }}$	Output Supply Current		\bullet	285	320	mA
$P_{\text {DISS }}$	Power Dissipation		\bullet	58	70	mA

CMOS OUTPUT MODE

OV $_{\text {DD }}$	Output Supply Voltage	(Note 8)	\bullet	0.5	2.5	2.625
$I_{\text {VDD }}$	Analog Supply Current	(Note 7)	\bullet	285	320	mA
$P_{\text {DISS }}$	Power Dissipation			740	mW	

TIMING CHARACTERISTICS The denotes the speciifications which apply vver the tull operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{f}_{\text {S }}$	Sampling Frequency	(Note 8)	\bullet	1		250	MHz
t_{L}	ENC Low Time (Note 7)	Duty Cycle Stabilizer Off Duty Cycle Stabilizer On	\bullet	$\begin{aligned} & 1.9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	ns
$t_{\text {H }}$	ENC High Time (Note 7)	Duty Cycle Stabilizer Off Duty Cycle Stabilizer On	\bullet	$\begin{aligned} & 1.9 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	ns
$t_{\text {AP }}$	Sample-and-Hold Aperture Delay				0.4		ns
$\mathrm{t}_{\underline{\text { E }}}$	Output Enable Delay	(Note 7)	\bullet		5	10	ns
LVDS OUTPUT MODE							
t_{D}	ENC to DATA Delay	(Note 7)	\bullet	1	1.7	2.8	ns
t_{C}	ENC to CLKOUT Delay	(Note 7)	\bullet	1	1.7	2.8	ns
	DATA to CLKOUT Skew	$\left(\mathrm{t}_{\mathrm{C}}-\mathrm{t}_{\mathrm{D}}\right)($ Note 7)	\bullet	-0.6	0	0.6	ns
	Rise Time				0.5		ns
	Fall Time				0.5		ns
	Pipeline Latency				5		Cycles
CMOS OUTPUT MODE							
t_{D}	ENC to DATA Delay	(Note 7)	\bullet	1	1.7	2.8	ns
t_{c}	ENC to CLKOUT Delay	(Note 7)	\bullet	1	1.7	2.8	ns
	DATA to CLKOUT Skew	$\left(\mathrm{t}_{\mathrm{C}}-\mathrm{t}_{\mathrm{D}}\right)($ Note 7)	\bullet	-0.6	0	0.6	ns
Pipeline Latency	Full Rate CMOS				5		Cycles
	Demuxed Interleaved				5		Cycles
	Demuxed Simultaneous				5 and 6		Cycles

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: All voltage values are with respect to ground with GND and OGND wired together (unless otherwise noted).
Note 3: When these pin voltages are taken below GND or above $V_{D D}$, they will be clamped by internal diodes. This product can handle input currents of greater than 100 mA below GND or above $V_{D D}$ without latchup.
Note 4: $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=250 \mathrm{MHz}$, LVDS outputs, differential ENC $^{+} /$ENC $^{-}=2 \mathrm{~V}_{\text {P-p }}$ sine wave, input range $=2 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ with differential drive, unless otherwise noted.
Note 5: Integral nonlinearity is defined as the deviation of a code from a "best straight line" fit to the transfer curve. The deviation is measured from the center of the quantization band.

Note 6: Offset error is the offset voltage measured from -0.5 LSB when the output code flickers between 000000000000 and 111111111111 in 2's complement output mode.
Note 7: Guaranteed by design, not subject to test.
Note 8: Recommended operating conditions.
Note 9: $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=250 \mathrm{MHz}$, differential $\mathrm{ENC}^{+} /$ENC $^{-}=2 \mathrm{~V}_{\text {P-P }}$ sine wave, input range $=1 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ with differential drive, output $\mathrm{C}_{\mathrm{LOAD}}=5 \mathrm{pF}$. Note 10: SNR minimum and typical values are for LVDS mode. Typical values for CMOS mode are typically 0.3 dB lower.
Note 11: SFDR minimum values are for LVDS mode. Typical values are for both LVDS and CMOS modes.
Note 12: SINAD minimum and typical values are for LVDS mode. Typical values for CMOS mode are typically 0.3 dB lower.

TYPICAL PERFORMAOCE CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted, Note 4)

224212 G01

224212 G02

8192 Point FFT, $\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}$, -1dB, 2V Range, LVDS Mode

224212 GO3

224212 G04

$224212 G 07$

224212 GO5

8192 Point FFT, $\mathrm{f}_{\mathrm{IN}}=1 \mathrm{GHz}$,
-1dB, 1V Range, LVDS Mode

$224212 G 08$
SFDR (HD2 and HD3) vs Input Frequency, -1dB, LVDS Mode

8192 Point FFT, $\mathrm{f}_{\mathrm{IN}}=240 \mathrm{MHz}$, -1dB, 2V Range, LVDS Mode

224212 GO6
8192 Point 2-Tone FFT, $\mathrm{f}_{\mathrm{IN}}=135 \mathrm{MHz}$ and 140 MHz , -1dB, 2V Range, LVDS Mode

224212 GO9
SFDR (HD4+) vs Input Frequency, -1dB, LVDS Mode

224212 G13

SFDR vs Input Level, $\mathfrak{f}_{\mathrm{IN}}=70 \mathrm{MHz}$,
2V Range

SNR vs SENSE, $\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz},-1 \mathrm{~dB}$

Ivod vs Sample Rate, 5MHz Sine Wave Input, -1dB

224212 G16

Iovdd vs Sample Rate, 5MHz Sine
Wave Input, -1dB

PIn functions

(CMOS Mode)

$\mathrm{A}_{\text {IN }}{ }^{+}$(Pins 1, 2): Positive Differential Analog Input.
$\mathrm{A}_{\mathrm{IN}^{-}}{ }^{-}$(Pins 3, 4): Negative Differential Analog Input.
REFHA (Pins 5, 6): ADC High Reference. Bypass to Pins 7,8 with 0.1μ F ceramic chip capacitor, to Pins 11,12 with a $2.2 \mu \mathrm{~F}$ ceramic capacitor and to ground with $1 \mu \mathrm{~F}$ ceramic capacitor.
REFLB (Pins 7, 8): ADC Low Reference. Bypass to Pins 5, 6 with 0.1μ F ceramic chip capacitor. Do not connect to Pins 11, 12.
REFHB (Pins 9, 10): ADC High Reference. Bypass to Pins 11, 12 with 0.1μ F ceramic chip capacitor. Do not connect to Pins 5, 6.
REFLA (Pins 11, 12): ADC Low Reference. Bypass to Pins 9, 10 with 0.1μ F ceramic chip capacitor, to Pins 5, 6 with a $2.2 \mu \mathrm{~F}$ ceramic capacitor and to ground with $1 \mu \mathrm{~F}$ ceramic capacitor.
$V_{D D}$ (Pins 13, 14, 15, 62, 63): 2.5V Supply. Bypass to GND with $0.1 \mu \mathrm{~F}$ ceramic chip capacitors.
GND (Pins 16, 61, 64): ADC Power Ground.
ENC+ (Pin 17): Encode Input. Conversion starts on the positive edge.
ENC ${ }^{-}$(Pin 18): Encode Complement Input. Conversion starts on the negative edge. Bypass to ground with $0.1 \mu \mathrm{~F}$ ceramic for single-ended ENCODE signal.
SHDN (Pin 19): Shutdown Mode Selection Pin. Connecting SHDN to GND and OE to GND results in normal operation with the outputs enabled. Connecting SHDN to GND and $\overline{\mathrm{OE}}$ to V_{DD} results in normal operation with the outputs at high impedance. Connecting SHDN to $V_{D D}$ and $\overline{\mathrm{OE}}$ to GND results in nap mode with the outputs at high impedance. Connecting SHDN to $V_{D D}$ and $\overline{\mathrm{OE}}$ to V_{DD} results in sleep mode with the outputs at high impedance.
$\overline{\mathbf{O E}}$ (Pin 20): Output Enable Pin. Refer to SHDN pin function.
DB0 - DB11 (Pins 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 35, 36): Digital Outputs, B Bus. DB11 is the MSB. At high impedance in full rate CMOS mode.
OGND (Pins 25, 33, 41, 50): Output Driver Ground.
OV ${ }_{\text {DD }}$ (Pins 26, 34, 42, 49): Positive Supply for the Output Drivers. Bypass to ground with $0.1 \mu \mathrm{~F}$ ceramic chip capacitor.

OFB (Pin 37): Over/Under Flow Output for B Bus. High when an over or under flow has occurred. At high impedance in full rate CMOS mode.

CLKOUTB (Pin 38): Data Valid Output for B Bus. In demux mode with interleaved update, latch B bus data on the falling edge of CLKOUTB. In demux mode with simultaneous update, latch B bus data on the rising edge of CLKOUTB. This pin does not become high impedance in full rate CMOS mode.
CLKOUTA (Pin 39): Data Valid Output for A Bus. Latch A bus data on the falling edge of CLKOUTA.
DAO - DA11 (Pins 40, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55): Digital Outputs, A Bus. DA11 is the MSB.
OFA (Pin 56): Over/Under Flow Output for A Bus. High when an over or under flow has occurred.
LVDS (Pin 57): Output Mode Selection Pin. Connecting LVDS to OV selects full rate CMOS mode. Connecting LVDS to $1 / 3 V_{D D}$ selects demux CMOS mode with simultaneous update. Connecting LVDS to $2 / 3 \mathrm{~V}_{\text {DD }}$ selects demux CMOS mode with interleaved update. Connecting LVDS to $V_{D D}$ selects LVDS mode.
MODE (Pin 58): Output Format and Clock Duty Cycle Stabilizer Selection Pin. Connecting MODE to OV selects offset binary output format and turns the clock duty cycle stabilizer off. Connecting MODE to $1 / 3 \mathrm{~V}_{\text {DD }}$ selects offset binary outputformatand turns the clock duty cycle stabilizer on. Connecting MODE to $2 / 3 \mathrm{~V}_{\text {DD }}$ selects 2's complement output format and turns the clock duty cycle stabilizer on. Connecting MODE to V_{DD} selects 2's complement output format and turns the clock duty cycle stabilizer off.
SENSE (Pin 59): Reference Programming Pin. Connecting SENSE to $\mathrm{V}_{\text {CM }}$ selects the internal reference and a $\pm 0.5 \mathrm{~V}$ input range. Connecting SENSE to $V_{D D}$ selects the internal reference and a $\pm 1 \mathrm{~V}$ input range. An external reference greater than 0.5 V and less than 1 V applied to SENSE selects an input range of $\pm \mathrm{V}_{\text {SENSE }} \pm 1 \mathrm{~V}$ is the largest valid input range.
$\mathbf{V}_{\text {CM }}$ (Pin 60): 1.25V Output and Input Common Mode Bias. Bypass to ground with $2.2 \mu \mathrm{~F}$ ceramic chip capacitor.
GND (Exposed Pad) (Pin 65): ADC Power Ground. The exposed pad on the bottom of the package needs to be soldered to ground.

PIn functions

(LVDS Mode)

AIN+ (Pins 1, 2): Positive Differential Analog Input.
AIN- (Pins 3, 4): Negative Differential Analog Input.
REFHA (Pins 5, 6): ADC High Reference. Bypass to Pins 7,8 with 0.1μ F ceramic chip capacitor, to Pins 11,12 with a $2.2 \mu \mathrm{~F}$ ceramic capacitor and to ground with $1 \mu \mathrm{~F}$ ceramic capacitor.
REFLB (Pins 7, 8): ADC Low Reference. Bypass to Pins 5, 6 with 0.1μ F ceramic chip capacitor. Do not connect to Pins 11, 12.
REFHB (Pins 9, 10): ADC High Reference. Bypass to Pins 11,12 with $0.1 \mu \mathrm{~F}$ ceramic chip capacitor. Do not connect to Pins 5, 6.
REFLA (Pins 11, 12): ADC Low Reference. Bypass to Pins 9,10 with $0.1 \mu \mathrm{~F}$ ceramic chip capacitor, to Pins 5, 6 with a $2.2 \mu \mathrm{~F}$ ceramic capacitor and to ground with $1 \mu \mathrm{~F}$ ceramic capacitor.
$V_{D D}$ (Pins 13, 14, 15, 62, 63): 2.5V Supply. Bypass to GND with $0.1 \mu \mathrm{~F}$ ceramic chip capacitors.
GND (Pins 16, 61, 64): ADC Power Ground.
ENC ${ }^{+}$(Pin 17): Encode Input. Conversion starts on the positive edge.
ENC (Pin 18): Encode Complement Input. Conversion starts on the negative edge. Bypass to ground with $0.1 \mu \mathrm{~F}$ ceramic for single-ended ENCODE signal.
SHDN (Pin 19): Shutdown Mode Selection Pin. Connecting SHDN to GND and $\overline{\mathrm{OE}}$ to GND results in normal operation with the outputs enabled. Connecting SHDN to GND and $\overline{O E}$ to $V_{D D}$ results in normal operation with the outputs at high impedance. Connecting SHDN to $V_{D D}$ and OE to GND results in nap mode with the outputs at high impedance. Connecting SHDN to V_{DD} and $\overline{\mathrm{OE}}$ to V_{DD} results in sleep mode with the outputs at high impedance.
$\overline{\mathbf{O E}}$ (Pin 20): Output Enable Pin. Refer to SHDN pin function.
DO-/D0 ${ }^{+}$to D11-/D11+ (Pins 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54): LVDS Digital Outputs. All LVDS outputs require differential 100Ω termination resistors at the LVDS receiver. D11 $/ \mathrm{D} 11^{+}$is the MSB.

OGND (Pins 25, 33, 41, 50): Output Driver Ground.
OV ${ }_{\text {DD }}$ (Pins 26, 34, 42, 49): Positive Supply for the Output Drivers. Bypass to ground with $0.1 \mu \mathrm{~F}$ ceramic chip capacitor.
CLKOUT ${ }^{-}$/CLKOUT+ ${ }^{+}$(Pins 35 to 36): LVDS Data Valid Output. Latch data on rising edge of CLKOUT${ }^{-}$, falling edge of CLKOUT ${ }^{+}$.
0F$/ \mathbf{O F}^{+}$(Pins 55 to 56): LVDS Over/Under Flow Output. High when an over or under flow has occurred.
LVDS (Pin 57): Output Mode Selection Pin. Connecting LVDS to OV selects full rate CMOS mode. Connecting LVDS to $1 / 3 V_{D D}$ selects demux CMOS mode with simultaneous update. Connecting LVDS to $2 / 3 V_{D D}$ selects demux CMOS mode with interleaved update. Connecting LVDS to $V_{D D}$ selects LVDS mode.
MODE (Pin 58): Output Format and Clock Duty Cycle Stabilizer Selection Pin. Connecting MODE to OV selects offset binary output format and turns the clock duty cycle stabilizer off. Connecting MODE to $1 / 3 V_{\text {DD }}$ selects offset binary outputformat and turns the clock duty cycle stabilizer on. Connecting MODE to $2 / 3 \mathrm{~V}_{\mathrm{DD}}$ selects 2's complement output format and turns the clock duty cycle stabilizer on. Connecting MODE to $V_{D D}$ selects 2's complement output format and turns the clock duty cycle stabilizer off.
SENSE (Pin 59): Reference Programming Pin. Connecting SENSE to V_{CM} selects the internal reference and a $\pm 0.5 \mathrm{~V}$ input range. Connecting SENSE to $V_{D D}$ selects the internal reference and a $\pm 1 \mathrm{~V}$ input range. An external reference greater than 0.5 V and less than 1 V applied to SENSE selects an input range of $\pm \mathrm{V}_{\text {SENSE }} \pm 1 \mathrm{~V}$ is the largest valid input range.
$\mathbf{V}_{\text {CM }}$ (Pin 60): 1.25V Output and Input Common Mode Bias. Bypass to ground with $2.2 \mu \mathrm{~F}$ ceramic chip capacitor. GND (Exposed Pad) (Pin 65): ADC Power Ground. The exposed pad on the bottom of the package needs to be soldered to ground.

fUnCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

LVDS Output Mode Timing
All Outputs Are Differential and Have LVDS Levels

Full-Rate CMOS Output Mode Timing
All Outputs Are Single-Ended and Have CMOS Levels

timing piagrams

Demultiplexed CMOS Outputs with Interleaved Update All Outputs Are Single-Ended and Have CMOS Levels

Demultiplexed CMOS Outputs with Simultaneous Update All Outputs Are Single-Ended and Have CMOS Levels

APPLICATIONS InfORMATION

DYNAMIC PERFORMANCE

Signal-to-Noise Plus Distortion Ratio

The signal-to-noise plus distortion ratio [S/(N + D)] is the ratio between the RMS amplitude of the fundamental input frequency and the RMS amplitude of all other frequency components at the ADC output. The output is band limited to frequencies above DC to below half the sampling frequency.

Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is the ratio between the RMS amplitude of the fundamental input frequency and the RMS amplitude of all other frequency components except the first five harmonics and DC.

Total Harmonic Distortion

Total harmonic distortion is the ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency. THD is expressed as:

$$
\mathrm{THD}=20 \log \left(\sqrt{\left(\mathrm{~V}^{2}+\mathrm{V}^{2}+\mathrm{V}^{2}+\ldots \mathrm{Vn}{ }^{2}\right)} / \mathrm{V} 1\right)
$$

where V1 is the RMS amplitude of the fundamental frequency and V 2 through V are the amplitudes of the second through nth harmonics. The THD calculated in this data sheet uses all the harmonics up to the fifth.

Intermodulation Distortion

If the ADC input signal consists of more than one spectral component, the ADC transfer function nonlinearity can produce intermodulation distortion (IMD) in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.
If two pure sine waves of frequencies fa and fb are applied to the ADC input, nonlinearities in the ADC transfer function can create distortion products at the sum and difference frequencies of $\mathrm{mfa} \pm \mathrm{nfb}$, where m and $\mathrm{n}=0,1,2,3$, etc. The 3rd order intermodulation products are $2 \mathrm{fa}+\mathrm{fb}$,
$2 \mathrm{fb}+\mathrm{fa}, 2 \mathrm{fa}-\mathrm{fb}$ and $2 \mathrm{fb}-\mathrm{fa}$. The intermodulation distortion is defined as the ratio of the RMS value of either input tone to the RMS value of the largest 3rd order intermodulation product.

Spurious Free Dynamic Range (SFDR)

Spurious free dynamic range is the peak harmonic or spurious noise that is the largest spectral component excluding the input signal and DC . This value is expressed in decibels relative to the RMS value of a full scale input signal.

Full Power Bandwidth

The full power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3 dB for a full scale input signal.

Aperture Delay Time

The time from when a rising ENC ${ }^{+}$equals the ENC $^{-}$voltage to the instant that the inputsignal is held by the sample and hold circuit.

Aperture Delay Jitter

The variation in the aperture delay time from conversion to conversion. This random variation will result in noise when sampling an AC input. The signal to noise ratio due to the jitter alone will be:

$$
\text { SNR }_{\text {JITTER }}=-20 \log \left(2 \pi \bullet f_{I N} \bullet \mathrm{t}_{\text {JITTER }}\right)
$$

CONVERTER OPERATION

As shown in Figure 1, the LTC2242-12 is a CMOS pipelined multi-step converter. The converter has five pipelined ADC stages; a sampled analog input will result in a digitized value five cycles later (see the Timing Diagram section). For optimal performance the analog inputs should be driven differentially. The encode input is differential for improved common mode noise immunity. The LTC2242-12 has two phases of operation, determined by the state of the differential ENC $^{+}$/ENC- input pins. For brevity, the text will refer to ENC $^{+}$greater than ENC $^{-}$as ENC high and ENC ${ }^{+}$less than ENC- as ENC low.

APPLICATIONS Information

Each pipelined stage shown in Figure 1 contains an ADC, a reconstruction DAC and an interstage residue amplifier. In operation, the ADC quantizes the input to the stage and the quantized value is subtracted from the input by the DAC to produce a residue. The residue is amplified and output by the residue amplifier. Successive stages operate out of phase so that when the odd stages are outputting their residue, the even stages are acquiring that residue and vice versa.

When ENC is low, the analog input is sampled differentially directly onto the input sample-and-hold capacitors, inside the "Input S / H " shown in the block diagram. At the instant that ENC transitions from low to high, the sampled input is held. While ENC is high, the held input voltage is buffered by the S / H amplifier which drives the first pipelined ADC stage. The first stage acquires the output of the S/H during this high phase of ENC. When ENC goes back Iow, the first stage produces its residue which is acquired by the second stage. At the same time, the input S / H goes back to acquiring the analog input. When ENC goes back high, the second stage produces its residue which is acquired by the third stage. An identical process is repeated for the third and fourth stages, resulting in a fourth stage residue that is sent to the fifth stage ADC for final evaluation.

Each ADC stage following the first has additional range to accommodate flash and amplifier offset errors. Results from all of the ADC stages are digitally synchronized such that the results can be properly combined in the correction logic before being sent to the output buffer.

SAMPLE/HOLD OPERATION AND INPUT DRIVE

Sample/Hold Operation

Figure 2 shows an equivalent circuit for the LTC2242-12 CMOS differential sample-and-hold. The analog inputs are connected to the sampling capacitors (CSAMPLE) through NMOS transistors. The capacitors shown attached to each input (CPARASITIC) are the summation of all other capacitance associated with each input.
During the sample phase when ENC is low, the transistors connect the analog inputs to the sampling capacitors and they charge to, and track the differential input voltage.

Figure 2. Equivalent Input Circuit
When ENC transitions from low to high, the sampled input voltage is held on the sampling capacitors. During the hold phase when ENC is high, the sampling capacitors are disconnected from the input and the held voltage is passed to the ADC core for processing. As ENC transitions from high to low, the inputs are reconnected to the sampling capacitors to acquire a new sample. Since the sampling capacitors still hold the previous sample, a charging glitch proportional to the change in voltage between samples will be seen at this time. If the change between the last sample and the new sample is small, the charging glitch seen at the input will be small. If the input change is large, such as the change seen with input frequencies near Nyquist, then a larger charging glitch will be seen.

Common Mode Bias

For optimal performance the analog inputs should be driven differentially. Each input should swing $\pm 0.5 \mathrm{~V}$ for the 2 V range or $\pm 0.25 \mathrm{~V}$ for the 1 V range, around a common mode voltage of 1.25 V . The $\mathrm{V}_{\text {CM }}$ output pin (Pin 60) may be used to provide the common mode bias level. $V_{\text {CM }}$ can be tied directly to the center tap of a transformer to set the DC input level or as a reference level to an op amp

APPLLCATIONS InFORMATION

differential driver circuit. The $V_{C M}$ pin must be bypassed to ground close to the ADC with a $2.2 \mu \mathrm{~F}$ or greater capacitor.

Input Drive Impedance

As with all high performance, high speed ADCs, the dynamic performance of the LTC2242-12 can be influenced by the input drive circuitry, particularly the second and third harmonics. Source impedance and input reactance can influence SFDR. At the falling edge of ENC, the sample-and-hold circuit will connect the 2pF sampling capacitor to the input pin and start the sampling period. The sampling period ends when ENC rises, holding the sampled input on the sampling capacitor. Ideally the input circuitry should be fast enough to fully charge the sampling capacitor during the sampling period $1 /\left(2 f_{\mathrm{S}}\right)$; however, this is not always possible and the incomplete settling may degrade the SFDR. The sampling glitch has been designed to be as linear as possible to minimize the effects of incomplete settling.
For the best performance, it is recommended to have a source impedance of 100Ω or less for each input. The source impedance should be matched for the differential inputs. Poor matching will result in higher even order harmonics, especially the second.

Input Drive Circuits

Figure 3 shows the LTC2242-12 being driven by an RF transformer with a center tapped secondary. The secondary center tap is $D C$ biased with $V_{C M}$, setting the ADC input signal at its optimum DC level. Terminating on the transformer secondary is desirable, as this provides a common mode path for charging glitches caused by the sample and hold. Figure 3 shows a 1:1 turns ratio transformer. Other turns ratios can be used if the source impedance seen by the ADC does not exceed 100Ω for each ADC input. A disadvantage of using a transformer is the loss of low frequency response. Most small RF transformers have poor performance at frequencies below 1 MHz .
Figure 4 demonstrates the use of a differential amplifier to convert a single ended input signal into a differential input signal. The advantage of this method is that it provides low frequency input response; however, the
limited gain bandwidth of most op amps will limit the SFDR at high input frequencies.

Figure 5 shows a capacitively-coupled input circuit. The impedance seen by the analog inputs should be matched.
The 25Ω resistors and 12 pF capacitor on the analog inputs serve two purposes: isolating the drive circuitry from the

Figure 3. Single-Ended to Differential Conversion Using a Transformer

Figure 4. Differential Drive with an Amplifier

Figure 5. Capacitively-Coupled Drive

APPLICATIONS INFORMATION

sample-and-hold charging glitches and limiting the wideband noise at the converter input. For input frequencies higher than 100 MHz , the capacitor may need to be decreased to prevent excessive signal loss.
The $\mathrm{A}_{\text {IN }}{ }^{+}$and $\mathrm{A}_{\text {IN }}{ }^{-}$inputs each have two pins to reduce package inductance. The two $A_{I N}{ }^{+}$and the two $\mathrm{A}_{\mathrm{IN}}{ }^{-}$pins should be shorted together.

For input frequencies above 100 MHz the input circuits of Figure 6, 7 and 8 are recommended. The balun transformer gives better high frequency response than a flux coupled center-tapped transformer. The coupling capacitors allow the analog inputs to be DC biased at 1.25 V . In Figure 8 the series inductors are impedance matching elements that maximize the ADC bandwidth.

Reference Operation

Figure 9 shows the LTC2242-12 reference circuitry consisting of a 1.25 V bandgap reference, a difference amplifier and switching and control circuit. The internal voltage reference can be configured for two pin selectable input ranges of 2 V ($\pm 1 \mathrm{~V}$ differential) or $1 \mathrm{~V}(\pm 0.5 \mathrm{~V}$ differential). Tying the SENSE pin to $V_{D D}$ selects the 2 V range; typing the SENSE pin to V_{CM} selects the 1 V range.

The 1.25 V bandgap reference serves two functions: its output provides a DC bias point for setting the common mode voltage of any external input circuitry; additionally, the reference is used with a difference amplifier to generate the differential reference levels needed by the internal ADC circuitry. An external bypass capacitor is required for the 1.25 V reference output, V_{CM}. This provides a high frequency low impedance path to ground for internal and external circuitry.

The difference amplifier generates the high and low reference for the ADC. High speed switching circuits are connected to these outputs and they must be externally bypassed. Each output has four pins: two each of REFHA and REFHB for the high reference and two each of REFLA and REFLB for the low reference. The multiple output pins are needed to reduce package inductance. Bypass capacitors must be connected as shown in Figure 9.

Figure 6. Recommended Front End Circuit for Input Frequencies Between 100 MHz and 250 MHz

Figure 7. Recommended Front End Circuit for Input Frequencies Between 250 MHz and 500 MHz

Figure 8. Recommended Front End Circuit for Input Frequencies Above 500MHz

APPLICATIONS InFORMATION

Figure 9. Equivalent Reference Circuit

Figure 10. 1.5V Range ADC
Other voltage ranges in between the pin selectable ranges can be programmed with two external resistors as shown in Figure 10. An external reference can be used by applying its output directly or through a resistor divider to SENSE. It is not recommended to drive the SENSE pin with a logic device. The SENSE pin should be tied to the appropriate level as close to the converter as possible. If the SENSE pin
is driven externally, it should be bypassed to ground as close to the device as possible with a $1 \mu \mathrm{~F}$ ceramic capacitor.

Input Range

The input range can be set based on the application. The 2 V input range will provide the best signal-to-noise performance while maintaining excellent SFDR. The 1V input range will have better SFDR performance, but the SNR will degrade by 5 dB . See the Typical Performance Characteristics section.

Driving the Encode Inputs

The noise performance of the LTC2242-12 can depend on the encode signal quality as much as on the analog input. The ENC+/ENC ${ }^{-}$inputs are intended to be driven differentially, primarily for noise immunity from common mode noise sources. Each input is biased through a 4.8 k resistor to a 1.5 V bias. The bias resistors set the DC operating point for transformer coupled drive circuits and can set the logic threshold for single-ended drive circuits.

Any noise present on the encode signal will result in additional aperture jitter that will be RMS summed with the inherent ADC aperture jitter.
In applications where jitter is critical (high input frequencies) take the following into consideration:

1. Differential drive should be used.
2. Use as large an amplitude as possible; if transformer coupled use a higher turns ratio to increase the amplitude.
3. If the ADC is clocked with a sinusoidal signal, filter the encode signal to reduce wideband noise.
4. Balance the capacitance and series resistance at both encode inputs so that any coupled noise will appear at both inputs as common mode noise. The encode inputs have a common mode range of 1.2 V to 2.0 V . Each input may be driven from ground to $V_{D D}$ for single-ended drive.

APPLICATIONS INFORMATION

Figure 11. Transformer Driven ENC ${ }^{+} /$ENC $^{-}$

Figure 12a. Single-Ended ENC Drive, Not Recommended for Low Jitter

Maximum and Minimum Encode Rates

The maximum encode rate for the LTC2242-12 is 250 Msps . For the ADC to operate properly, the encode signal should have a 50% ($\pm 5 \%$) duty cycle. Each half cycle must have at least $1.9 n$ for the ADC internal circuitry to have enough settling time for proper operation. Achieving a precise 50% duty cycle is easy with differential sinusoidal drive using a transformer or using symmetric differential logic such as PECL or LVDS.
An optional clock duty cycle stabilizer circuit can be used if the input clock has a non 50% duty cycle. This circuit uses the rising edge of the ENC ${ }^{+}$pin to sample the analog input. The falling edge of ENC ${ }^{+}$is ignored and the internal falling edge is generated by a phase-locked loop. The input clock duty cycle can vary from 40% to 60% and the clock duty cycle stabilizer will maintain a constant 50% internal

Figure 12b. ENC Drive Using LVDS
duty cycle. If the clock is turned off for a long period of time, the duty cycle stabilizer circuit will require one hundred clock cycles for the PLL to lock onto the input clock. To use the clock duty cycle stabilizer, the MODE pin should be connected to $1 / 3 V_{D D}$ or $2 / 3 V_{D D}$ using external resistors.
The lower limit of the LTC2242-12 sample rate is determined by droop of the sample-and-hold circuits. The pipelined architecture of this ADC relies on storing analog signals on small valued capacitors. Junction leakage will discharge the capacitors. The specified minimum operating frequency for the LTC2242-12 is 1Msps.

DIGITAL OUTPUTS

Table 1 shows the relationship between the analog input voltage, the digital data bits, and the overflow bit.

APPLICATIONS InFORMATION

Table 1. Output Codes vs Input Voltage

AIN $^{+}-$A AIN $^{-}$ (2V RANGE)	OF	D11 - DO (OFFSET BINARY)	D11 - DO (2's COMPLEMENT)
$>+1.000000 \mathrm{~V}$	1	111111111111	0111111111111
+0.999512 V	0	111111111111	011111111111
+0.999024 V	0	111111111110	011111111110
+0.000488 V	0	100000000001	000000000001
0.000000 V	0	100000000000	000000000000
-0.000488 V	0	011111111111	111111111111
-0.000976 V	0	011111111110	111111111110
-0.999512 V	0	000000000001	100000000001
-1.000000 V	0	000000000000	100000000000
$<-1.000000 \mathrm{~V}$	1	000000000000	100000000000

Digital Output Modes

The LTC2242-12 can operate in several digital output modes: LVDS, CMOS running at full speed, and CMOS demultiplexed onto two buses, each of which runs at half speed. In the demultiplexed CMOS modes the two buses (referred to as bus A and bus B) can either be updated on alternate clock cycles (interleaved mode) or simultaneously (simultaneous mode). For details on the clock timing, refer to the timing diagrams.

The LVDS pin selects which digital output mode the part uses. This pin has a four-level logic input which should be connected to GND, $1 / 3 V_{D D}, 2 / 3 V_{D D}$ or $V_{D D}$. An external resistor divider can be used to set the $1 / 3 \mathrm{~V}_{\mathrm{DD}}$ or $2 / 3 \mathrm{~V}_{D D}$ logic values. Table 2 shows the logic states for the LVDS pin.

Table 2. LVDS Pin Function

LVDS	DIGITAL OUTPUT MODE
GND	Full-Rate CMOS
$1 / 3 V_{D D}$	Demultiplexed CMOS, Simultaneous Update
$2 / 3 V_{D D}$	Demultiplexed CMOS, Interleaved Update
$V_{D D}$	LVDS

Digital Output Buffers (CMOS Modes)

Figure 13a shows an equivalent circuit for a single output buffer in the CMOS output mode. Each buffer is powered by $O V_{D D}$ and OGND, which are isolated from the ADC power and ground. The additional N -channel transistor in the output driver allows operation down to voltages as low as 0.5 V . The internal resistor in series with the output makes the output appear as 50Ω to external circuitry and may eliminate the need for external damping resistors.

As with all high speed/high resolution converters, the digital output loading can affect the performance. The digital outputs of the LTC2242-12 should drive a minimal capacitive load to avoid possible interaction between the digital outputs and sensitive input circuitry. The output should be buffered with a device such as an 74VCX245 CMOS latch. For full speed operation the capacitive load should be kept under 10 pF .

Lower $\mathrm{OV}_{\mathrm{DD}}$ voltages will also help reduce interference from the digital outputs.

Digital Output Buffers (LVDS Mode)

Figure 13b shows an equivalent circuit for a differential output pair in the LVDS output mode. A 3.5 mA current is steered from OUT ${ }^{+}$to OUT $^{-}$or vice versa which creates a $\pm 350 \mathrm{mV}$ differential voltage across the 100Ω termination resistor at the LVDS receiver. A feedback loop regulates the common mode output voltage to 1.25 V . For proper operation each LVDS output pair needs an external 100Ω termination resistor, even if the signal is not used (such as $\mathrm{OF}^{+} / \mathrm{OF}^{-}$or $\mathrm{CLKOUT}^{+} / \mathrm{CLKOUT}^{-}$). To minimize noise the PC board traces for each LVDS output pair should be routed close together. To minimize clock skew all LVDS PC board traces should have about the same length.

APPLICATIONS INFORMATION

Figure 13a. Digital Output Buffer in CMOS Mode

Data Format

The LTC2242-12 parallel digital output can be selected for offset binary or 2's complement format. The format is selected with the MODE pin. Connecting MODE to GND or $1 / 3 \mathrm{~V}_{D D}$ selects offset binary output format. Connecting MODE to $2 / 3 V_{D D}$ or $V_{D D}$ selects 2's complement output format. An external resistor divider can be used to set the $1 / 3 \mathrm{~V}_{D D}$ or $2 / 3 \mathrm{~V}_{D D}$ logic values. Table 3 shows the logic states for the MODE pin.

Table 3. MODE Pin Function

MODE PIN	OUTPUT FORMAT	CLOCK DUTY CYCLE STABILIZER
0	Offset Binary	Off
$1 / 3 V_{D D}$	Offset Binary	On
$2 / 3 V_{D D}$	2 's Complement	On
$V_{D D}$	2 's Complement	Off

Overflow Bit

An overflow output bit indicates when the converter is overranged or underranged. In CMOS mode, a logic high on the OFA pin indicates an overflow or underflow on the A data bus, while a logic high on the OFB pin indicates an overflow or underflow on the B data bus. In LVDS mode, a differential logic high on the $\mathrm{OF}^{+} / \mathrm{OF}^{-}$pins indicates an overflow or underflow.

Output Clock

The ADC has a delayed version of the ENC+ input available as a digital output, CLKOUT. The CLKOUT pin can be used

Figure 13b. Digital Output in LVDS Mode
to synchronize the converter data to the digital system. This is necessary when using a sinusoidal encode. In all CMOS modes, A bus data will be updated just afterCLKOUTA rises and can be latched on the falling edge of CLKOUTA. Indemux CMOS mode with interleaved update, B bus data will be updated just after CLKOUTB rises and can be latched on the falling edge of CLKOUTB. In demux CMOS mode with simultaneous update, B bus data will be updated just after CLKOUTB falls and can be latched on the rising edge of CLKOUTB. In LVDS mode, data will be updated just after CLKOUT+/CLKOUT- rises and can be latched on the falling edge of CLKOUT ${ }^{+} /$CLKOUT $^{-}$.

Output Driver Power

Separate output power and ground pins allow the output drivers to be isolated from the analog circuitry. The power supply for the digital output buffers, $\mathrm{OV}_{\mathrm{DD}}$, should be tied to the same power supply as for the logic being driven. For example if the converter is driving a DSP powered by a 1.8 V supply then $\mathrm{OV}_{\mathrm{DD}}$ should be tied to that same 1.8 V supply.
In the CMOS output mode, OV $V_{D D}$ can be powered with any voltage up to 2.625 V . OGND can be powered with any voltage from GND up to 1 V and must be less than $\mathrm{OV}_{\mathrm{DD}}$. The logic outputs will swing between OGND and OV $\mathrm{VD}_{\mathrm{DD}}$.
In the LVDS output mode, $\mathrm{OV}_{\mathrm{DD}}$ should be connected to a 2.5 V supply and OGND should be connected to GND.

APPLICATIONS InFORMATION

Output Enable

The outputs may be disabled with the output enable pin, $\overline{\mathrm{OE}}$. In CMOS or LVDS output modes $\overline{\mathrm{OE}}$ high disables all data outputs including OF and CLKOUT. The data access and bus relinquish times are too slow to allow the outputs to be enabled and disabled during full speed operation. The output $\mathrm{Hi}-\mathrm{Z}$ state is intended for use during long periods of inactivity.
The Hi-Z state is nota truly open circuit; the outputpins that make an LVDS output pair have a 20 k resistance between them. Therefore in the CMOS output mode, adjacent data bits will have 20k resistance in between them, even in the $\mathrm{Hi}-\mathrm{Z}$ state.

Sleep and Nap Modes

The converter may be placed in shutdown or nap modes to conserve power. Connecting SHDN to GND results in normal operation. Connecting SHDN to $V_{D D}$ and $\overline{\mathrm{EE}}$ to V_{DD} results in sleep mode, which powers down all circuitry including the reference and typically dissipates 1 mW . When exiting sleep mode it will take milliseconds for the output data to become valid because the reference capacitors have to recharge and stabilize. Connecting SHDN to $V_{D D}$ and $\overline{O E}$ to GND results in nap mode, which typically dissipates 28 mW . In nap mode, the on-chip reference circuit is kept on, so that recovery from nap mode is faster than that from sleep mode, typically taking 100 clock cycles. In both sleep and nap mode all digital outputs are disabled and enter the $\mathrm{Hi}-\mathrm{Z}$ state.

GROUNDING AND BYPASSING

The LTC2242-12 requires a printed circuit board with a clean unbroken ground plane. A multilayer board with an internal ground plane is recommended. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital signal alongside an analog signal or underneath the ADC.

High quality ceramic bypass capacitors should be used at the $\mathrm{V}_{\mathrm{DD}}, O \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CM}}$, REFHA, REFHB, REFLA and REFLB pins. Bypass capacitors must be located as close to the pins as possible. Of particular importance are the capacitors between REFHA and REFLB and between REFHB and REFLA.

These capacitors should be as close to the device as possible (1.5 mm or less). Size 0402 ceramic capacitors are recommended. The $2.2 \mu \mathrm{~F}$ capacitor between REFHA and REFLA can be somewhat further away. The traces connecting the pins and bypass capacitors must be kept short and should be made as wide as possible.
The LTC2242-12 differential inputs should run parallel and close to each other. The input traces should be as short as possible to minimize capacitance and to minimize noise pickup.

HEAT TRANSFER

Most of the heat generated by the LTC2242-12 istransferred from the die through the bottom-side exposed pad and package leads onto the printed circuit board. For good electrical and thermal performance, the exposed pad should be soldered to a large grounded pad on the PC board. It is critical that all ground pins are connected to a ground plane of sufficient area.

Clock Sources for Undersampling

Undersampling is especially demanding on the clock source and the higher the input frequency, the greater the sensitivity to clockjitter or phase noise. A clock source that degrades SNR of a full-scale signal by 1 dB at 70 MHz will degrade SNR by 3 dB at 140 MHz , and 4.5 dB at 190 MHz .
In cases where absolute clock frequency accuracy is relatively unimportant and only a single ADC is required, a canned oscillator from vendors such as Saronix or Vectron can be placed close to the ADC and simply connected directly to the ADC. If there is any distance to the ADC, some source termination to reduce ringing that may occur even over a fraction of an inch is advisable. You must not allow the clock to overshoot the supplies or performance will suffer. Do not filter the clock signal with a narrow band filter unless you have a sinusoidal clock source, as the rise and fall time artifacts present in typical digital clock signals will be translated into phase noise.
The lowest phase noise oscillators have single-ended sinusoidal outputs, and for these devices the use of a filter close to the ADC may be beneficial. This filter should be

APPLICATIONS INFORMATION

close to the ADC to both reduce roundtrip reflection times, as well as reduce the susceptibility of the traces between the filter and the ADC. If the circuit is sensitive to closein phase noise, the power supply for oscillators and any buffers must be very stable, or propagation delay variation with supply will translate into phase noise. Even though these clock sources may be regarded as digital devices, do not operate them on a digital supply. If your clock is also used to drive digital devices such as an FPGA, you should locate the oscillator, and any clock fan-out devices close to the ADC, and give the routing to the ADC precedence. The clock signals to the FPGA should have series termination at the driver to prevent high frequency noise from the FPGA disturbing the substrate of the clock fan-out device. If you use an FPGA as a programmable divider, you must re-time the signal using the original
oscillator, and the re-timing flip-flop as well as the oscillator should be close to the ADC, and powered with a very quiet supply.
For cases where there are multiple ADCs, or where the clock source originates some distance away, differential clock distribution is advisable. This is advisable both from the perspective of EMI, but also to avoid receiving noise from digital sources both radiated, as well as propagated in the waveguides that exist between the layers of multilayer PCBs. The differential pairs must be close together and distanced from other signals. The differential pair should be guarded on both sides with copper distanced at least $3 x$ the distance between the traces, and grounded with vias no more than $1 / 4$ inch apart.

APPLICATIONS InFORMATION

APPLICATIONS INFORMATION

Silkscreen Top

Layer 1 Component Side

Layer 2 GND Plane

APPLICATIONS InFORMATION

Layer 3 Power Plane

Layer 4 Bottom Side

PACKAGE DESCRIPTION

UP Package
64-Lead Plastic QFN ($9 \mathrm{~mm} \times 9 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1705)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1748	14-Bit, 80Msps, 5V ADC	76.3dB SNR, 90dB SFDR, 48-Pin TSSOP
LTC1750	14-Bit, 80Msps, 5V Wideband ADC	Up to 500MHz IF Undersampling, 90dB SFDR
LT®1993-2	High Speed Differential Op Amp	$800 \mathrm{MHz} \mathrm{BW}, 70 \mathrm{dBc}$ Distortion at 70MHz, 6dB Gain
LT1994	Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver	Low Distortion: -94dBc at 1 MHz
LTC2202	16-Bit, 10Msps, 3.3V ADC, Lowest Noise	140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN
LTC2208	16-Bit, 130Msps, 3.3V ADC, LVDS Outputs	$1250 \mathrm{~mW}, 77.7 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN
LTC2220	12-Bit, 170Msps, 3.3V ADC, LVDS Outputs	890mW, 67.7dB SNR, 84dB SFDR, 64-Pin QFN
LTC2220-1	12-Bit, 185Msps, 3.3V ADC, LVDS Outputs	$910 \mathrm{~mW}, 67.7 \mathrm{~dB}$ SNR, 80dB SFDR, 64-Pin QFN
LTC2221	12-Bit, 135Msps, 3.3V ADC, LVDS Outputs	660mW, 67.8dB SNR, 84dB SFDR, 64-Pin QFN
LTC2224	12-Bit, 135Msps, 3.3V ADC, High IF Sampling	630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN
LTC2230	10-Bit, 170Msps, 3.3V ADC, LVDS Outputs	890mW, 61.2dB SNR, 78dB SFDR, 64-Pin QFN
LTC2231	10-Bit, 135Msps, 3.3V ADC, LVDS Outputs	660mW, 61.2dB SNR, 78dB SFDR, 64-Pin QFN
LTC2240-10	10-Bit, 170Msps, 2.5V ADC, LVDS Outputs	$460 \mathrm{~mW}, 60.6 \mathrm{~dB}$ SNR, 78dB SFDR, 64-Pin QFN
LTC2240-12	12-Bit, 170Msps, 2.5V ADC, LVDS Outputs	$445 \mathrm{~mW}, 65.5 \mathrm{~dB}$ SNR, 80dB SFDR, 64-Pin QFN
LTC2241-10	10-Bit, 210Msps, 2.5V ADC, LVDS Outputs	620mW, 60.6dB SNR, 78dB SFDR, 64-Pin QFN
LTC2241-12	12-Bit, 210Msps, 2.5V ADC, LVDS Outputs	585mW, 65.5dB SNR, 78dB SFDR, 64-Pin QFN
LTC2242-10	10-Bit, 250Msps, 2.5V ADC, LVDS Outputs	$775 \mathrm{~mW}, 60.5 \mathrm{~dB}$ SNR, 78dB SFDR, 64-Pin QFN
LTC2255	14-Bit, 125Msps, 3V ADC, Lowest Power	$395 \mathrm{~mW}, 72.5 \mathrm{~dB}$ SNR, 88dB SFDR, 32-Pin QFN
LTC2284	14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk	$540 \mathrm{~mW}, 72.4 \mathrm{~dB}$ SNR, 88dB SFDR, 64-Pin QFN
$\underline{\text { LT5512 }}$	DC to 3GHz High Signal Level Downconverting Mixer	DC to 3GHz, 21dBm IIP3, Integrated LO Buffer
LT5514	Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain	450 MHz to 1dB BW, 47dB OIP3, Digital Gain Control 10.5 dB to 33 dB in $1.5 \mathrm{~dB} / \mathrm{Step}$
LT5515	1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator	High IIP3: 20dBm at 1.9 GHz , Integrated LO Quadrature Generator
LT5516	800MHz to 1.5GHz Direct Conversion Quadrature Demodulator	High IIP3: 21.5dBm at 900MHz, Integrated LO Quadrature Generator
LT5517	40MHz to 900MHz Direct Conversion Quadrature Demodulator	High IIP3: 21 dBm at 800 MHz , Integrated LO Quadrature Generator
LT5522	600MHz to 2.7GHz High Linearity Downconverting Mixer	4.5 V to 5.25 V Supply, 25 dBm IIP3 at $900 \mathrm{MHz}, \mathrm{NF}=12.5 \mathrm{~dB}$, 50Ω Single-Ended RF and LO Ports

